原文:https://www . geeksforgeeks . org/给定阵列的所有配对产品/

给定一个由 n 个整数组成的数组 arr[] ,任务是从给定的数组中找出所有可能的对的乘积,例如:

  • (arr[i],arr[i]) 也被认为是有效对。
  • (arr[i]、arr[j])(arr[j]、arr[i]) 被认为是两个不同的对。

打印结果答案模数 10^9 7.

示例:

输入: arr[] = {1,2} 输出: 16 解释: 所有有效对为(1,1)、(1,2)、(2,1)和(2,2)。 因此,1 * 1 * 1 * 2 * 2 * 1 * 2 * 2 = 16

输入: arr[] = {1,2,3} 输出: 46656 解释: 所有有效对为(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2)和(3,3)。 因此该产品为 1 * 1 * 1 * * 2 * 1 * 3 * 2 * 1 * 2 * 2 * 2 * 3 * 3 * 1 * 3 * 2 * 3 * 3 = 46656

天真方法:解决上述问题的天真方法是找到所有可能的对,并计算每对元素的乘积。

下面是上述方法的实现:

c

// c   implementation to find the
// product of all the pairs from
// the given array
#include 
using namespace std;
#define mod 1000000007
// function to return the product of
// the elements of all possible pairs
// from the array
int productpairs(int arr[], int n)
{
    // to store the required product
    int product = 1;
    // nested loop to calculate all
    // possible pairs
    for (int i = 0; i < n; i  ) {
        for (int j = 0; j < n; j  ) {
            // multiply the product of
            // the elements of the
            // current pair
            product *= (arr[i] % mod
                        * arr[j] % mod)
                       % mod;
            product = product % mod;
        }
    }
    // return the final result
    return product % mod;
}
// driver code
int main()
{
    int arr[] = { 1, 2, 3 };
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << productpairs(arr, n);
    return 0;
}

java 语言(一种计算机语言,尤用于创建网站)

// java implementation to find the
// product of all the pairs from
// the given array
import java.util.*;
class gfg{
static final int mod = 1000000007;
// function to return the product of
// the elements of all possible pairs
// from the array
static int productpairs(int arr[], int n)
{
    // to store the required product
    int product = 1;
    // nested loop to calculate all
    // possible pairs
    for(int i = 0; i < n; i  )
    {
       for(int j = 0; j < n; j  )
       {
          // multiply the product
          // of the elements of the
          // current pair
          product *= (arr[i] % mod *
                      arr[j] % mod) % mod;
          product = product % mod;
       }
    }
    // return the final result
    return product % mod;
}
// driver code
public static void main(string[] args)
{
    int arr[] = { 1, 2, 3 };
    int n = arr.length;
    system.out.print(productpairs(arr, n));
}
}
// this code is contributed by sapnasingh4991

python 3

# python3 implementation to find the
# product of all the pairs from
# the given array
mod = 1000000007;
# function to return the product of
# the elements of all possible pairs
# from the array
def productpairs(arr, n):
    # to store the required product
    product = 1;
    # nested loop to calculate all
    # possible pairs
    for i in range(n):
        for j in range(n):
            # multiply the product
            # of the elements of the
            # current pair
            product *= (arr[i] % mod *
                        arr[j] % mod) % mod;
            product = product % mod;
    # return the final result
    return product % mod;
# driver code
if __name__ == '__main__':
    arr = [1, 2, 3];
    n = len(arr);
    print(productpairs(arr, n));
# this code is contributed by 29ajaykumar

c

// c# implementation to find the
// product of all the pairs from
// the given array
using system;
class gfg{
static readonly int mod = 1000000007;
// function to return the product of
// the elements of all possible pairs
// from the array
static int productpairs(int []arr, int n)
{
    // to store the required product
    int product = 1;
    // nested loop to calculate all
    // possible pairs
    for(int i = 0; i < n; i  )
    {
        for(int j = 0; j < n; j  )
        {
            // multiply the product
            // of the elements of the
            // current pair
            product *= (arr[i] % mod *
                        arr[j] % mod) % mod;
            product = product % mod;
        }
    }
    // return the readonly result
    return product % mod;
}
// driver code
public static void main(string[] args)
{
    int []arr = { 1, 2, 3 };
    int n = arr.length;
    console.write(productpairs(arr, n));
}
}
// this code is contributed by sapnasingh4991

java 描述语言


output: 46656 

时间复杂度: o(n 2 )

高效方法:我们可以观察到,每个元素作为一对 (x,y) 的元素之一,恰好出现 (2 * n) 次。正好 n 倍为 x ,正好 n 倍为 y

下面是上述方法的实现:

c

// c   implementation to find the product
// of all the pairs from the given array
#include 
using namespace std;
#define mod 1000000007
#define ll long long int
// function to calculate
// (x^y)00000007
int power(int x, unsigned int y)
{
    int p = 1000000007;
    // initialize result
    int res = 1;
    // update x if it is more than
    // or equal to p
    x = x % p;
    while (y > 0) {
        // if y is odd, multiply x
        // with result
        if (y & 1)
            res = (res * x) % p;
        y = y >> 1;
        x = (x * x) % p;
    }
    // return the final result
    return res;
}
// function to return the product
// of the elements of all possible
// pairs from the array
ll productpairs(ll arr[], ll n)
{
    // to store the required product
    ll product = 1;
    // iterate for every element
    // of the array
    for (int i = 0; i < n; i  ) {
        // each element appears (2 * n) times
        product
            = (product
               % mod
               * (int)power(
                     arr[i], (2 * n))
               % mod)
              % mod;
    }
    return product % mod;
}
// driver code
int main()
{
    ll arr[] = { 1, 2, 3 };
    ll n = sizeof(arr) / sizeof(arr[0]);
    cout << productpairs(arr, n);
    return 0;
}

java 语言(一种计算机语言,尤用于创建网站)

// java implementation to find the product
// of all the pairs from the given array
import java.util.*;
class gfg{
static final int mod = 1000000007;
// function to calculate
// (x^y)00000007
static int power(int x, int y)
{
    int p = 1000000007;
    // initialize result
    int res = 1;
    // update x if it is more than
    // or equal to p
    x = x % p;
    while (y > 0)
    {
        // if y is odd, multiply x
        // with result
        if (y % 2 == 1)
            res = (res * x) % p;
        y = y >> 1;
        x = (x * x) % p;
    }
    // return the final result
    return res;
}
// function to return the product
// of the elements of all possible
// pairs from the array
static int productpairs(int arr[], int n)
{
    // to store the required product
    int product = 1;
    // iterate for every element
    // of the array
    for (int i = 0; i < n; i  )
    {
        // each element appears (2 * n) times
        product = (product % mod *
                  (int)power(arr[i],
                            (2 * n)) % mod) % mod;
    }
    return product % mod;
}
// driver code
public static void main(string[] args)
{
    int arr[] = { 1, 2, 3 };
    int n = arr.length;
    system.out.print(productpairs(arr, n));
}
}
// this code is contributed by amal kumar choubey

python 3

# python3 implementation to find the product
# of all the pairs from the given array
mod = 1000000007
# function to calculate
# (x^y)00000007
def power(x, y):
    p = 1000000007
    # initialize result
    res = 1
    # update x if it is more than
    # or equal to p
    x = x % p
    while (y > 0):
        # if y is odd, multiply x
        # with result
        if ((y & 1) != 0):
            res = (res * x) % p
        y = y >> 1
        x = (x * x) % p
    # return the final result
    return res
# function to return the product
# of the elements of all possible
# pairs from the array
def productpairs(arr, n):
    # to store the required product
    product = 1
    # iterate for every element
    # of the array
    for i in range(n):
        # each element appears (2 * n) times
        product = (product % mod *
          (int)(power(arr[i], (2 * n))) %
                            mod) % mod
    return (product % mod)
# driver code
arr = [ 1, 2, 3 ]
n = len(arr)
print(productpairs(arr, n))
# this code is contributed by divyeshrabadiya07

c

// c# implementation to find the product
// of all the pairs from the given array
using system;
class gfg{
const int mod = 1000000007;
// function to calculate
// (x^y)00000007
static int power(int x, int y)
{
    int p = 1000000007;
    // initialize result
    int res = 1;
    // update x if it is more than
    // or equal to p
    x = x % p;
    while (y > 0)
    {
        // if y is odd, multiply x
        // with result
        if (y % 2 == 1)
            res = (res * x) % p;
        y = y >> 1;
        x = (x * x) % p;
    }
    // return the final result
    return res;
}
// function to return the product
// of the elements of all possible
// pairs from the array
static int productpairs(int []arr, int n)
{
    // to store the required product
    int product = 1;
    // iterate for every element
    // of the array
    for (int i = 0; i < n; i  )
    {
        // each element appears (2 * n) times
        product = (product % mod *
                  (int)power(arr[i],
                            (2 * n)) % mod) % mod;
    }
    return product % mod;
}
// driver code
public static void main()
{
    int []arr = { 1, 2, 3 };
    int n = arr.length;
    console.write(productpairs(arr, n));
}
}
// this code is contributed by code_mech

java 描述语言


output: 46656 

时间复杂度:t2【o(n)t4】