原文:https://www . geeksforgeeks . org/全素数积数组/

给定一个由 n 个正整数组成的数组 arr[]。任务是编写一个程序来寻找给定数组的所有素数的乘积。 :

输入 : arr[] = {1,3,4,5,7} 输出 : 105 有三个素数,3,5,7 的乘积= 105。 输入 : arr[] = {1,2,3,4,5,6,7} 输出 : 210

天真方法:一个简单的解决方法是遍历数组,不断检查每个元素是否是素数,同时计算素数元素的乘积。 高效方法:使用厄拉多塞的筛生成数组中最大元素的所有素数,并将它们存储在哈希中。现在遍历数组,用筛子找出那些质数的乘积。 以下是上述方法的实施:

c

// cpp program to find product of
// primes in given array.
#include 
using namespace std;
// function to find the product of prime numbers
// in the given array
int primeproduct(int arr[], int n)
{
    // find maximum value in the array
    int max_val = *max_element(arr, arr   n);
    // use sieve to find all prime numbers less
    // than or equal to max_val
    // create a boolean array "prime[0..n]". a
    // value in prime[i] will finally be false
    // if i is not a prime, else true.
    vector prime(max_val   1, true);
    // remaining part of sieve
    prime[0] = false;
    prime[1] = false;
    for (int p = 2; p * p <= max_val; p  ) {
        // if prime[p] is not changed, then
        // it is a prime
        if (prime[p] == true) {
            // update all multiples of p
            for (int i = p * 2; i <= max_val; i  = p)
                prime[i] = false;
        }
    }
    // product all primes in arr[]
    int prod = 1;
    for (int i = 0; i < n; i  )
        if (prime[arr[i]])
            prod *= arr[i];
    return prod;
}
// driver code
int main()
{
    int arr[] = { 1, 2, 3, 4, 5, 6, 7 };
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << primeproduct(arr, n);
    return 0;
}

java 语言(一种计算机语言,尤用于创建网站)

// java program to find product of
// primes in given array.
import java.util.*;
class gfg
{
// function to find the product of prime numbers
// in the given array
static int primeproduct(int arr[], int n)
{
    // find maximum value in the array
    int max_val = arrays.stream(arr).max().getasint();
    // use sieve to find all prime numbers less
    // than or equal to max_val
    // create a boolean array "prime[0..n]". a
    // value in prime[i] will finally be false
    // if i is not a prime, else true.
    vector prime = new vector(max_val   1);
    for(int i = 0; i < max_val   1; i  )
        prime.add(i, boolean.true);
    // remaining part of sieve
    prime.add(0, boolean.false);
    prime.add(1, boolean.false);
    for (int p = 2; p * p <= max_val; p  )
    {
        // if prime[p] is not changed, then
        // it is a prime
        if (prime.get(p) == true)
        {
            // update all multiples of p
            for (int i = p * 2; i <= max_val; i  = p)
                prime.add(i, boolean.false);
        }
    }
    // product all primes in arr[]
    int prod = 1;
    for (int i = 0; i < n; i  )
        if (prime.get(arr[i]))
            prod *= arr[i];
    return prod;
}
// driver code
public static void main(string[] args)
{
    int arr[] = { 1, 2, 3, 4, 5, 6, 7 };
    int n = arr.length;
    system.out.print(primeproduct(arr, n));
}
}
// this code has been contributed by 29ajaykumar

python 3

# python3 program to find product of
# primes in given array
import math as mt
# function to find the product of prime
# numbers in the given array
def primeproduct(arr, n):
    # find the maximum value in the array
    max_val = max(arr)
    # use sieve to find all prime numbers
    # less than or equal to max_val
    # create a boolean array "prime[0..n]". a
    # value in prime[i] will finally be false
    # if i is not a prime, else true.
    prime = [true for i in range(max_val   1)]
    # remaining part of sieve
    prime[0] = false
    prime[1] = false
    for p in range(mt.ceil(mt.sqrt(max_val))):
        # remaining part of sieve
        # if prime[p] is not changed,
        # than it is prime
        if prime[p]:
            # update all multiples of p
            for i in range(p * 2, max_val   1, p):
                prime[i] = false
    # product all primes in arr[]
    prod = 1
    for i in range(n):
        if prime[arr[i]]:
            prod *= arr[i]
    return prod
# driver code
arr = [1, 2, 3, 4, 5, 6, 7]
n = len(arr)
print(primeproduct(arr, n))
# this code is contributed
# by mohit kumar 29

c

// c# program to find product of
// primes in given array.
using system;
using system.linq;
using system.collections.generic;
class gfg
{
// function to find the product of prime numbers
// in the given array
static int primeproduct(int []arr, int n)
{
    // find maximum value in the array
    int max_val = arr.max();
    // use sieve to find all prime numbers less
    // than or equal to max_val
    // create a boolean array "prime[0..n]". a
    // value in prime[i] will finally be false
    // if i is not a prime, else true.
    list prime = new list(max_val   1);
    for(int i = 0; i < max_val   1; i  )
        prime.insert(i, true);
    // remaining part of sieve
    prime.insert(0, false);
    prime.insert(1, false);
    for (int p = 2; p * p <= max_val; p  )
    {
        // if prime[p] is not changed, then
        // it is a prime
        if (prime[p] == true)
        {
            // update all multiples of p
            for (int i = p * 2; i <= max_val; i  = p)
                prime.insert(i, false);
        }
    }
    // product all primes in arr[]
    int prod = 1;
    for (int i = 0; i < n; i  )
        if (prime[arr[i]])
            prod *= arr[i];
    return prod;
}
// driver code
public static void main()
{
    int []arr = { 1, 2, 3, 4, 5, 6, 7 };
    int n = arr.length;
    console.write(primeproduct(arr, n));
}
}
/* this code contributed by princiraj1992 */

服务器端编程语言(professional hypertext preprocessor 的缩写)


java 描述语言


output: 

210