原文:
给定一个数字 n,写一个高效的函数打印 n 的所有,比如输入数字是 12,那么输出应该是“2 2 3”。如果输入的数字是 315,那么输出应该是“3 3 5 7”。
以下是寻找所有主要因素的步骤。 1) 当 n 可被 2 整除时,打印 2 并除以 2。 2) 第 1 步之后,n 一定是奇数。现在开始一个从 i = 3 到 n 的平方根的循环,当我除 n 时,打印 i,用 i 除 n,在我未能除 n 后,将 i 增加 2 并继续。 3) 如果 n 是素数且大于 2,那么通过以上两步 n 不会变成 1。所以如果大于 2 就打印 n。
c
// c program to print all prime factors
#include
using namespace std;
// a function to print all prime
// factors of a given number n
void primefactors(int n)
{
// print the number of 2s that divide n
while (n % 2 == 0)
{
cout << 2 << " ";
n = n/2;
}
// n must be odd at this point. so we can skip
// one element (note i = i 2)
for (int i = 3; i <= sqrt(n); i = i 2)
{
// while i divides n, print i and divide n
while (n % i == 0)
{
cout << i << " ";
n = n/i;
}
}
// this condition is to handle the case when n
// is a prime number greater than 2
if (n > 2)
cout << n << " ";
}
/* driver code */
int main()
{
int n = 315;
primefactors(n);
return 0;
}
// this is code is contributed by rathbhupendra
c
// program to print all prime factors
# include
# include
// a function to print all prime factors of a given number n
void primefactors(int n)
{
// print the number of 2s that divide n
while (n%2 == 0)
{
printf("%d ", 2);
n = n/2;
}
// n must be odd at this point. so we can skip
// one element (note i = i 2)
for (int i = 3; i <= sqrt(n); i = i 2)
{
// while i divides n, print i and divide n
while (n%i == 0)
{
printf("%d ", i);
n = n/i;
}
}
// this condition is to handle the case when n
// is a prime number greater than 2
if (n > 2)
printf ("%d ", n);
}
/* driver program to test above function */
int main()
{
int n = 315;
primefactors(n);
return 0;
}
java 语言(一种计算机语言,尤用于创建网站)
// program to print all prime factors
import java.io.*;
import java.lang.math;
class gfg
{
// a function to print all prime factors
// of a given number n
public static void primefactors(int n)
{
// print the number of 2s that divide n
while (n%2==0)
{
system.out.print(2 " ");
n /= 2;
}
// n must be odd at this point. so we can
// skip one element (note i = i 2)
for (int i = 3; i <= math.sqrt(n); i = 2)
{
// while i divides n, print i and divide n
while (n%i == 0)
{
system.out.print(i " ");
n /= i;
}
}
// this condition is to handle the case when
// n is a prime number greater than 2
if (n > 2)
system.out.print(n);
}
public static void main (string[] args)
{
int n = 315;
primefactors(n);
}
}
计算机编程语言
# python program to print prime factors
import math
# a function to print all prime factors of
# a given number n
def primefactors(n):
# print the number of two's that divide n
while n % 2 == 0:
print 2,
n = n / 2
# n must be odd at this point
# so a skip of 2 ( i = i 2) can be used
for i in range(3,int(math.sqrt(n)) 1,2):
# while i divides n , print i and divide n
while n % i== 0:
print i,
n = n / i
# condition if n is a prime
# number greater than 2
if n > 2:
print n
# driver program to test above function
n = 315
primefactors(n)
# this code is contributed by harshit agrawal
c
// c# program to print all prime factors
using system;
namespace prime
{
public class gfg
{
// a function to print all prime
// factors of a given number n
public static void primefactors(int n)
{
// print the number of 2s that divide n
while (n % 2 == 0)
{
console.write(2 " ");
n /= 2;
}
// n must be odd at this point. so we can
// skip one element (note i = i 2)
for (int i = 3; i <= math.sqrt(n); i = 2)
{
// while i divides n, print i and divide n
while (n % i == 0)
{
console.write(i " ");
n /= i;
}
}
// this condition is to handle the case whien
// n is a prime number greater than 2
if (n > 2)
console.write(n);
}
// driver code
public static void main()
{
int n = 315;
primefactors(n);
}
}
}
// this code is contributed by sam007
服务器端编程语言(professional hypertext preprocessor 的缩写)
2)
echo $n," ";
}
// driver code
$n = 315;
primefactors($n);
// this code is contributed by aj_36
?>
java 描述语言
输出:
3 3 5 7
这是如何工作的? 步骤 1 和 2 处理复合数,步骤 3 处理素数。为了证明完整的算法是有效的,我们需要证明步骤 1 和 2 实际上处理了复合数。很明显,步骤 1 处理偶数。在步骤 1 之后,所有剩余的质因数必须是奇数(两个质因数的差必须至少为 2),这解释了为什么 i 增加 2。
现在主要部分是,循环运行到 n 的平方根,而不是 n。为了证明这种优化是有效的,让我们考虑复合数的以下性质。
每个复合数至少有一个质因数小于或等于本身的平方根。 这个性质可以用反例来证明。设 a 和 b 是 n 的两个因子,使得 ab = n,如果两者都大于√n,那么 a.b > √n, √n,这与表达式“a * b = n”相矛盾。
在上述算法的步骤 2 中,我们运行一个循环,并在循环 中执行以下操作:a)找到最小质因数 i(必须小于√n), b)通过重复用 i 除 n 来从 n 中移除所有出现的 i,即 c)对除 n 和 i = i 2 重复步骤 a 和 b。重复步骤 a 和 b,直到 n 变成 1 或质数。
相关文章: 感谢 vishwas garg 提出上述算法。如果发现有不正确的地方,请写评论,或者想分享更多关于以上讨论话题的信息
麻将胡了pg电子网站的版权属于:月萌api www.moonapi.com,转载请注明出处