该数据集是麻省理工学院提供的原始数据。室内场景识别是高层次视觉中一个具有挑战性的开放性问题。 大多数适用于室外场景的场景识别模型在室内领域表现不佳。主要困难在于,虽然一些室内场景(例如走廊)可以通过全局空间属性很好地表征,但其他的(例如书店)可以通过它们包含的对象更好地表征。 更一般地说,为了解决室内场景识别问题,我们需要一个可以利用局部和全局判别信息的模型。 该数据库包含 67 个室内类别,
该数据集包含 12,500 张带有细胞类型标签 (csv) 的增强血细胞图像 (jpeg)。4 种不同细胞类型中的每一种都有大约 3,000 张图像,这些图像被分组到 4 个不同的文件夹中(根据细胞类型)。细胞类型是嗜酸性粒细胞、淋巴细胞、单核细胞和中性粒细胞。该数据集附带一个额外的数据集,其中包含原始 410 幅图像(预增强)以及两个额外的子类型标签(wbc 与 wbc),以及这 410 幅图像
数据集介绍 近年来,人们对将计算机视觉技术集成到零售行业产生了新的兴趣。自动结账 (aco) 是该领域的关键问题之一,旨在从要购买的产品图像中自动生成购物清单。这个问题的主要挑战来自产品类别的大规模和细粒度特性,以及由于产品的不断更新,难以收集反映真实结账场景的训练图像。尽管具有重要的实践和研究价值,但这个问题在计算机视觉社区中并没有得到广泛的研究,主要是由于缺乏高质量的数据集。为了填补这一空白,
该数据集已特别针对非洲地区进行了改进。 两个开源数据集仅用于提取非洲地区使用的交通标志。该数据集包含来自所有类别的 76 个类,例如 监管、警告、指南和信息标志。 该数据集总共包含 19,346 张图像和每个类别至少 200 个实例。
streetscenes challenge framework 是用于对象检测的图像、注释、软件和性能测量的集合。 每张图像都是从马萨诸塞州波士顿及其周边地区的 dsc-f717 相机拍摄的。 然后用围绕 9 个对象类别的每个示例的多边形手动标记每个图像,包括 [汽车、行人、自行车、建筑物、树木、天空、道路、人行道和商店]。 这些图像的标记是在仔细检查下完成的,以确保对象总是以相同的方式标记,关