“德国交通标志识别基准”是在 2011 年国际神经网络联合会议 (ijcnn) 上举办的多类单图像分类挑战赛。交通标志的自动识别是高级驾驶辅助系统所必需的,并且构成了具有挑战性的现实世界计算机视觉和模式识别问题。该数据集收集了超过 50,000 个交通标志图像的全面、逼真的数据集。它反映了由于距离、照明、天气条件、部分遮挡和旋转而导致的标志视觉外观的强烈变化。这些图像由几个预先计算的特征集补充,以
office-home 是一个用于域适应的基准数据集,它包含 4 个域,每个域由 65 个类别组成。这四个领域是: 艺术——素描、绘画、装饰等形式的艺术形象;剪贴画——剪贴画图像的集合;产品——没有背景的物体图像;和真实世界——用普通相机拍摄的物体图像。它包含 15,500 张图像,平均每个类大约 70 张图像,一个类最多 99 张图像。
数据集介绍该数据集为带有注释关节的足球运动员图像,可用于多视图重建。数据集包括:771张足球运动员的照片在 257 个时间实例中从 3 个视图中获取的图像14 个带注释的身体关节if you want to use this dataset please cite:
这一数据集是通过仔细注释几名患有不同器官肿瘤并在多家医院被诊断出的患者的组织图像获得的。该数据集是通过从tcga存档下载以 40 倍放大倍率捕获的 h&e 染色组织图像创建的。h&e 染色是增强组织切片对比度的常规方案,通常用于肿瘤评估(分级、分期等)。考虑到多个器官和患者的细胞核外观的多样性,以及多家医院采用的丰富染色方案,训练数据集将能够开发出开箱即用的稳健且可推广的细胞核分割技术。 ci
该数据集是来自伊利诺伊州芝加哥市交通摄像头的增强随机屏幕截图的集合。在数据中,所有车辆都被标记在一个名为 的类别中car。标签由边界框组成,并以 yolov5 pytorch 格式存储。 acknowledgements snyder, corey; do, minh (2019): data for streets: a novel camera network dataset for tr